日日操夜夜添-日日操影院-日日草夜夜操-日日干干-精品一区二区三区波多野结衣-精品一区二区三区高清免费不卡

公告:魔扣目錄網為廣大站長提供免費收錄網站服務,提交前請做好本站友鏈:【 網站目錄:http://www.ylptlb.cn 】, 免友鏈快審服務(50元/站),

點擊這里在線咨詢客服
新站提交
  • 網站:51998
  • 待審:31
  • 小程序:12
  • 文章:1030137
  • 會員:747

導讀

  • 前幾天和一個朋友討論了他們公司的系統問題,傳統的單體應用,集群部署,他說近期服務的并發量可能會出現瞬時增加的風險,雖然部署了集群,但是通過壓測后發現請求延遲仍然是很大,想問問我有什么改進的地方。我沉思了一會,現在去改架構顯然是不可能的,于是我給出了一個建議,讓他去做個接口限流,這樣能夠保證瞬時并發量飆高也不會出現請求延遲的問題,用戶的體驗度也會上去。
  • 至于什么是接口限流?怎么實現接口限流?如何實現單機應用的限流?如何實現分布式應用的限流?本篇文章將會詳細闡述。

限流的常見幾種算法

  • 常見的限流算法有很多,但是最常用的算法無非以下四種。

固定窗口計數器

接口限流還不太明白? 這篇文章可以看懂!

 

  • 固定算法的概念如下
  1. 將時間劃分為多個窗口
  2. 在每個窗口內每有一次請求就將計數器加一
  3. 如果計數器超過了限制數量,則本窗口內所有的請求都被丟棄當時間到達下一個窗口時,計數器重置。
  • 固定窗口計數器是最為簡單的算法,但這個算法有時會讓通過請求量允許為限制的兩倍。考慮如下情況:限制 1 秒內最多通過 5 個請求,在第一個窗口的最后半秒內通過了 5 個請求,第二個窗口的前半秒內又通過了 5 個請求。這樣看來就是在 1 秒內通過了 10 個請求。
接口限流還不太明白? 這篇文章可以看懂!

 

滑動窗口計數器

接口限流還不太明白? 這篇文章可以看懂!

 

  • 滑動窗口計數器算法概念如下:
  1. 將時間劃分為多個區間;
  2. 在每個區間內每有一次請求就將計數器加一維持一個時間窗口,占據多個區間;
  3. 每經過一個區間的時間,則拋棄最老的一個區間,并納入最新的一個區間;
  4. 如果當前窗口內區間的請求計數總和超過了限制數量,則本窗口內所有的請求都被丟棄。
  • 滑動窗口計數器是通過將窗口再細分,并且按照時間 " 滑動 ",這種算法避免了固定窗口計數器帶來的雙倍突發請求,但時間區間的精度越高,算法所需的空間容量就越大。

漏桶算法

接口限流還不太明白? 這篇文章可以看懂!

 

  • 漏桶算法概念如下:
  1. 將每個請求視作 " 水滴 " 放入 " 漏桶 " 進行存儲;
  2. “漏桶 " 以固定速率向外 " 漏 " 出請求來執行如果 " 漏桶 " 空了則停止 " 漏水”;
  3. 如果 " 漏桶 " 滿了則多余的 " 水滴 " 會被直接丟棄。
  • 漏桶算法多使用隊列實現,服務的請求會存到隊列中,服務的提供方則按照固定的速率從隊列中取出請求并執行,過多的請求則放在隊列中排隊或直接拒絕。
  • 漏桶算法的缺陷也很明顯,當短時間內有大量的突發請求時,即便此時服務器沒有任何負載,每個請求也都得在隊列中等待一段時間才能被響應。

令牌桶算法

接口限流還不太明白? 這篇文章可以看懂!

 

  • 令牌桶算法概念如下:
  1. 令牌以固定速率生成。
  2. 生成的令牌放入令牌桶中存放,如果令牌桶滿了則多余的令牌會直接丟棄,當請求到達時,會嘗試從令牌桶中取令牌,取到了令牌的請求可以執行。
  3. 如果桶空了,那么嘗試取令牌的請求會被直接丟棄。
  • 令牌桶算法既能夠將所有的請求平均分布到時間區間內,又能接受服務器能夠承受范圍內的突發請求,因此是目前使用較為廣泛的一種限流算法。

單體應用實現

  • 在傳統的單體應用中限流只需要考慮到多線程即可,使用google開源工具類guava即可。其中有一個RateLimiter專門實現了單體應用的限流,使用的是令牌桶算法。
  • 單體應用的限流不是本文的重點,官網上現成的API,讀者自己去看看即可,這里不再詳細解釋。

分布式限流

  • 分布式限流和熔斷現在有很多的現成的工具,比如Hystrix,Sentinel 等,但是還是有些企業不引用外來類庫,因此就需要自己實現。
  • redis作為單線程多路復用的特性,很顯然能夠勝任這項任務。

Redis如何實現

  • 使用令牌桶的算法實現,根據前面的介紹,我們了解到令牌桶算法的基礎需要兩個個變量,分別是桶容量,產生令牌的速率。
  • 這里我們實現的就是每秒產生的速率加上一個桶容量。但是如何實現呢?這里有幾個問題。
  • 需要保存什么數據在redis中?當前桶的容量,最新的請求時間
  • 以什么數據結構存儲?因為是針對接口限流,每個接口的業務邏輯不同,對并發的處理也是不同,因此要細化到每個接口的限流,此時我們選用HashMap的結構,hashKey是接口的唯一id,可以是請求的uri,里面的分別存儲當前桶的容量和最新的請求時間。
  • 如何計算需要放令牌?根據redis保存的上次的請求時間和當前時間比較,如果相差大于的產生令牌的時間(陳某實現的是1秒)則再次產生令牌,此時的桶容量為當前令牌+產生的令牌
  • 如何保證redis的原子性?保證redis的原子性,使用lua腳本即可解決。
  • 有了上述的幾個問題,便能很容易的實現。

開擼

1、lua腳本如下:

local ratelimit_info = redis.pcall('HMGET',KEYS[1],'last_time','current_token')
local last_time = ratelimit_info[1]
local current_token = tonumber(ratelimit_info[2])
local max_token = tonumber(ARGV[1])
local token_rate = tonumber(ARGV[2])
local current_time = tonumber(ARGV[3])
if current_token == nil then
  current_token = max_token
  last_time = current_time
else
  local past_time = current_time-last_time
  
  if past_time>1000 then
      current_token = current_token+token_rate
      last_time = current_time
  end

  ## 防止溢出
  if current_token>max_token then
    current_token = max_token
    last_time = current_time
  end
end

local result = 0
if(current_token>0) then
  result = 1
  current_token = current_token-1
  last_time = current_time
end
redis.call('HMSET',KEYS[1],'last_time',last_time,'current_token',current_token)
return result
  • 調用lua腳本出四個參數,分別是接口方法唯一id,桶容量,每秒產生令牌的數量,當前請求的時間戳。

2、 SpringBoot代碼實現

  • 采用Spring-data-redis實現lua腳本的執行。
  • Redis序列化配置:
 /**
     * 重新注入模板
     */
    @Bean(value = "redisTemplate")
    @Primary
    public RedisTemplate redisTemplate(RedisConnectionFactory redisConnectionFactory){
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(redisConnectionFactory);
        ObjectMApper objectMapper = new ObjectMapper();
        objectMapper.setSerializationInclusion(JsonInclude.Include.NON_NULL);
        objectMapper.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        //設置序列化方式,key設置string 方式,value設置成json
        StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();
        Jackson2JsonRedisSerializer jsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        jsonRedisSerializer.setObjectMapper(objectMapper);
        template.setEnableDefaultSerializer(false);
        template.setKeySerializer(stringRedisSerializer);
        template.setHashKeySerializer(stringRedisSerializer);
        template.setValueSerializer(jsonRedisSerializer);
        template.setHashValueSerializer(jsonRedisSerializer);
        return template;
    }
  • 限流工具類
/**
 * @Description 限流工具類
 * @Author CJB
 * @Date 2020/3/19 17:21
 */
public class RedisLimiterUtils {

    private static StringRedisTemplate stringRedisTemplate=ApplicationContextUtils.applicationContext.getBean(StringRedisTemplate.class);

    /**
     * lua腳本,限流
     */
    private final static String TEXT="local ratelimit_info = redis.pcall('HMGET',KEYS[1],'last_time','current_token')n" +
            "local last_time = ratelimit_info[1]n" +
            "local current_token = tonumber(ratelimit_info[2])n" +
            "local max_token = tonumber(ARGV[1])n" +
            "local token_rate = tonumber(ARGV[2])n" +
            "local current_time = tonumber(ARGV[3])n" +
            "if current_token == nil thenn" +
            "  current_token = max_tokenn" +
            "  last_time = current_timen" +
            "elsen" +
            "  local past_time = current_time-last_timen" +
            "  n" +
            "  if past_time>1000 thenn" +
            "t  current_token = current_token+token_raten" +
            "t  last_time = current_timen" +
            "  endn" +
            "n" +
            "  if current_token>max_token thenn" +
            "    current_token = max_tokenn" +
            "tlast_time = current_timen" +
            "  endn" +
            "endn" +
            "n" +
            "local result = 0n" +
            "if(current_token>0) thenn" +
            "  result = 1n" +
            "  current_token = current_token-1n" +
            "  last_time = current_timen" +
            "endn" +
            "redis.call('HMSET',KEYS[1],'last_time',last_time,'current_token',current_token)n" +
            "return result";


    /**
     * 獲取令牌
     * @param key 請求id
     * @param max 最大能同時承受多少的并發(桶容量)
     * @param rate  每秒生成多少的令牌
     * @return 獲取令牌返回true,沒有獲取返回false
     */
    public static boolean tryAcquire(String key, int max,int rate) {
        List<String> keyList = new ArrayList<>(1);
        keyList.add(key);
        DefaultRedisScript<Long> script = new DefaultRedisScript<>();
        script.setResultType(Long.class);
        script.setScriptText(TEXT);
        return Long.valueOf(1).equals(stringRedisTemplate.execute(script,keyList,Integer.toString(max), Integer.toString(rate),
                Long.toString(System.currentTimeMillis())));
    }
}
  • 采用攔截器+注解的方式實現,注解如下:
/**
 * @Description 限流的注解,標注在類上或者方法上。在方法上的注解會覆蓋類上的注解,同@Transactional
 * @Author CJB
 * @Date 2020/3/20 13:36
 */
@Inherited
@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface RateLimit {
    /**
     * 令牌桶的容量,默認100
     * @return
     */
    int capacity() default 100;

    /**
     * 每秒鐘默認產生令牌數量,默認10個
     * @return
     */
    int rate() default 10;
}
  • 攔截器如下:
/**
 * @Description 限流的攔器
 * @Author CJB
 * @Date 2020/3/19 14:34
 */
@Component
public class RateLimiterIntercept implements HandlerInterceptor {
    @Override
    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
        if (handler instanceof HandlerMethod){
            HandlerMethod handlerMethod=(HandlerMethod)handler;
            Method method = handlerMethod.getMethod();
            /**
             * 首先獲取方法上的注解
             */
            RateLimit rateLimit = AnnotationUtils.findAnnotation(method, RateLimit.class);
            //方法上沒有標注該注解,嘗試獲取類上的注解
            if (Objects.isNull(rateLimit)){
                //獲取類上的注解
                rateLimit = AnnotationUtils.findAnnotation(handlerMethod.getBean().getClass(), RateLimit.class);
            }

            //沒有標注注解,放行
            if (Objects.isNull(rateLimit))
                return true;

            //嘗試獲取令牌,如果沒有令牌了
            if (!RedisLimiterUtils.tryAcquire(request.getRequestURI(),rateLimit.capacity(),rateLimit.rate())){
                //拋出請求超時的異常
                throw new  TimeOutException();
            }
        }
        return true;
    }
}
  • SpringBoot配置攔截器的代碼就不貼了,以上就是完整的代碼,至此分布式限流就完成了。
  • 如果覺得作者寫的好,有所收獲的話,點個關注推薦一下喲!!!

分享到:
標簽:接口
用戶無頭像

網友整理

注冊時間:

網站:5 個   小程序:0 個  文章:12 篇

  • 51998

    網站

  • 12

    小程序

  • 1030137

    文章

  • 747

    會員

趕快注冊賬號,推廣您的網站吧!
最新入駐小程序

數獨大挑戰2018-06-03

數獨一種數學游戲,玩家需要根據9

答題星2018-06-03

您可以通過答題星輕松地創建試卷

全階人生考試2018-06-03

各種考試題,題庫,初中,高中,大學四六

運動步數有氧達人2018-06-03

記錄運動步數,積累氧氣值。還可偷

每日養生app2018-06-03

每日養生,天天健康

體育訓練成績評定2018-06-03

通用課目體育訓練成績評定