日日操夜夜添-日日操影院-日日草夜夜操-日日干干-精品一区二区三区波多野结衣-精品一区二区三区高清免费不卡

公告:魔扣目錄網為廣大站長提供免費收錄網站服務,提交前請做好本站友鏈:【 網站目錄:http://www.ylptlb.cn 】, 免友鏈快審服務(50元/站),

點擊這里在線咨詢客服
新站提交
  • 網站:51998
  • 待審:31
  • 小程序:12
  • 文章:1030137
  • 會員:747

數據清洗 (data cleaning) 是機器學習和深度學習進入算法步前的一項重要任務,我平時比較習慣使用的 7 個步驟,總結如下:

  • Step1 : read csv
  • Step2 : preview data
  • Step3: check null value for every column
  • Step4: complete null value
  • Step5: feature engineering
  • Step 5.1: delete some features
  • Step 5.2: create new feature
  • Step6: encode for categories columns
  • Step 6.1: Sklearn LabelEncode
  • Step 6.2: Pandas get_dummies
  • Step 7: check for data cleaning

今天使用泰坦尼克數據集,完整介紹以上 7 步的具體操作過程。

1 讀入數據

這不廢話嗎,第一步就是讀入數據。

data_raw = pd.read_csv('../input/titanicdataset-traincsv/train.csv')
data_raw

結果:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th...	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
...	...	...	...	...	...	...	...	...	...	...	...	...
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	C
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q
891 rows × 12 columns

2 數據預覽

data_raw.info()
data_raw.describe(include='all')

結果:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
count	891.000000	891.000000	891.000000	891	891	714.000000	891.000000	891.000000	891	891.000000	204	889
unique	NaN	NaN	NaN	891	2	NaN	NaN	NaN	681	NaN	147	3
top	NaN	NaN	NaN	Hakkarainen, Mr. Pekka Pietari	male	NaN	NaN	NaN	1601	NaN	G6	S
freq	NaN	NaN	NaN	1	577	NaN	NaN	NaN	7	NaN	4	644
mean	446.000000	0.383838	2.308642	NaN	NaN	29.699118	0.523008	0.381594	NaN	32.204208	NaN	NaN
std	257.353842	0.486592	0.836071	NaN	NaN	14.526497	1.102743	0.806057	NaN	49.693429	NaN	NaN
min	1.000000	0.000000	1.000000	NaN	NaN	0.420000	0.000000	0.000000	NaN	0.000000	NaN	NaN
25%	223.500000	0.000000	2.000000	NaN	NaN	20.125000	0.000000	0.000000	NaN	7.910400	NaN	NaN
50%	446.000000	0.000000	3.000000	NaN	NaN	28.000000	0.000000	0.000000	NaN	14.454200	NaN	NaN
75%	668.500000	1.000000	3.000000	NaN	NaN	38.000000	1.000000	0.000000	NaN	31.000000	NaN	NaN
max	891.000000	1.000000	3.000000	NaN	NaN	80.000000	8.000000	6.000000	NaN	512.329200	NaN	N

3 檢查null值

data1 = data_raw.copy(deep=True)

data1.isnull().sum()

結果:

PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64

Age 列 177 個空值,Cabin 687 個空值,一共才 891 行,估計沒啥價值了!Embarked 2 個。

4 補全空值

data1['Age'].fillna(data1['Age'].median(), inplace = True)
data1['Embarked'].fillna(data1['Embarked'].mode()[0], inplace = True)

data1.isnull().sum()

補全操作check:

PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age              0
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         0
dtype: int64

5 特征工程

5.1 干掉 3 列:

drop_column = ['PassengerId','Cabin', 'Ticket']
data1.drop(drop_column, axis=1, inplace = True)

5.2 增加 3 列

增加一列FamilySize

data1['FamilySize'] = data1 ['SibSp'] + data1['Parch'] + 1
data1

打印結果:

Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked	FamilySize
0	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	7.2500	S	2
1	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th...	female	38.0	1	0	71.2833	C	2
2	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	7.9250	S	1
3	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	53.1000	S	2
4	0	3	Allen, Mr. William Henry	male	35.0	0	0	8.0500	S	1
...	...	...	...	...	...	...	...	...	...	...
886	0	2	Montvila, Rev. Juozas	male	27.0	0	0	13.0000	S	1
887	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	30.0000	S	1
888	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	28.0	1	2	23.4500	S	4
889	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	30.0000	C	1
890	0	3	Dooley, Mr. Patrick	male	32.0	0	0	7.7500	Q	1
891 rows × 10 columns

再創建一列:

data1['IsAlone'] = np.where(data1['FamilySize'] > 1,0,1)

再創建一列:

data1['Title'] = data1['Name'].str.split(", ", expand=True)[1].str.split(".", expand=True)[0]
data1

結果:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked	FamilySize	IsAlone	Title
0	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	7.2500	S	2	0	Mr
1	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th...	female	38.0	1	0	71.2833	C	2	0	Mrs
2	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	7.9250	S	1	1	Miss
3	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	53.1000	S	2	0	Mrs
4	0	3	Allen, Mr. William Henry	male	35.0	0	0	8.0500	S	1	1	Mr
...	...	...	...	...	...	...	...	...	...	...	...	...
886	0	2	Montvila, Rev. Juozas	male	27.0	0	0	13.0000	S	1	1	Rev
887	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	30.0000	S	1	1	Miss
888	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	28.0	1	2	23.4500	S	4	0	Miss
889	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	30.0000	C	1	1	Mr
890	0	3	Dooley, Mr. Patrick	male	32.0	0	0	7.7500	Q	1	1	Mr
891 rows × 12 columns

5.3 分箱走起

data1['FareCut'] = pd.qcut(data1['Fare'], 4)
data1['AgeCut'] = pd.cut(data1['Age'].astype(int), 6)
data1

結果:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked	FamilySize	IsAlone	Title	FareCut	AgeCut
0	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	7.2500	S	2	0	Mr	(-0.001, 7.91]	(13.333, 26.667]
1	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th...	female	38.0	1	0	71.2833	C	2	0	Mrs	(31.0, 512.329]	(26.667, 40.0]
2	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	7.9250	S	1	1	Miss	(7.91, 14.454]	(13.333, 26.667]
3	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	53.1000	S	2	0	Mrs	(31.0, 512.329]	(26.667, 40.0]
4	0	3	Allen, Mr. William Henry	male	35.0	0	0	8.0500	S	1	1	Mr	(7.91, 14.454]	(26.667, 40.0]
...	...	...	...	...	...	...	...	...	...	...	...	...	...	...
886	0	2	Montvila, Rev. Juozas	male	27.0	0	0	13.0000	S	1	1	Rev	(7.91, 14.454]	(26.667, 40.0]
887	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	30.0000	S	1	1	Miss	(14.454, 31.0]	(13.333, 26.667]
888	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	28.0	1	2	23.4500	S	4	0	Miss	(14.454, 31.0]	(26.667, 40.0]
889	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	30.0000	C	1	1	Mr	(14.454, 31.0]	(13.333, 26.667]
890	0	3	Dooley, Mr. Patrick	male	32.0	0	0	7.7500	Q	1	1	Mr	(-0.001, 7.91]	(26.667, 40.0]
891 rows × 14 columns

6 編碼

6.1 LabelEncoder 方法

使用 Sklearn 的 LabelEncoder

from sklearn.preprocessing import LabelEncoder

label = LabelEncoder()
data1['Sex_Code'] = label.fit_transform(data1['Sex'])
data1['Embarked_Code'] = label.fit_transform(data1['Embarked'])
data1['Title_Code'] = label.fit_transform(data1['Title'])
data1['AgeBin_Code'] = label.fit_transform(data1['AgeCut'])
data1['FareBin_Code'] = label.fit_transform(data1['FareCut'])
data1

結果 data1 選取某些列,算法模型終于能認出它們了,多不容易!

6.2 get_dummies 方法

get_dummies 將長 DataFrame 變為寬 DataFrame:

pd.get_dummies(data1['Sex'])

結果:

female	male
0	0	1
1	1	0
2	1	0
3	1	0
4	0	1
...	...	...
886	0	1
887	1	0
888	1	0
889	0	1
890	0	1
891 rows × 2 columns

而 LabelEncoder 編碼后,僅僅是把 Female 編碼為 0, male 編碼為 1.

label.fit_transform(data1['Sex'])
0      1
1      0
2      0
3      0
4      1
      ..
886    1
887    0
888    0
889    1
890    1
Name: Sex_Code, Length: 891, dtype: int64

7 再 check

# Step 7: data cleaning check
data1[data1_x_alg].info()
print('-'*50)
data1_dummy.info()

結果:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 8 columns):
Sex_Code         891 non-null int64
Pclass           891 non-null int64
Embarked_Code    891 non-null int64
Title_Code       891 non-null int64
SibSp            891 non-null int64
Parch            891 non-null int64
Age              891 non-null float64
Fare             891 non-null float64
dtypes: float64(2), int64(6)
memory usage: 55.8 KB
--------------------------------------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 29 columns):
Pclass                891 non-null int64
SibSp                 891 non-null int64
Parch                 891 non-null int64
Age                   891 non-null float64
Fare                  891 non-null float64
FamilySize            891 non-null int64
IsAlone               891 non-null int64
Sex_female            891 non-null uint8
Sex_male              891 non-null uint8
Embarked_C            891 non-null uint8
Embarked_Q            891 non-null uint8
Embarked_S            891 non-null uint8
Title_Capt            891 non-null uint8
Title_Col             891 non-null uint8
Title_Don             891 non-null uint8
Title_Dr              891 non-null uint8
Title_Jonkheer        891 non-null uint8
Title_Lady            891 non-null uint8
Title_Major           891 non-null uint8
Title_Master          891 non-null uint8
Title_Miss            891 non-null uint8
Title_Mlle            891 non-null uint8
Title_Mme             891 non-null uint8
Title_Mr              891 non-null uint8
Title_Mrs             891 non-null uint8
Title_Ms              891 non-null uint8
Title_Rev             891 non-null uint8
Title_Sir             891 non-null uint8
Title_the Countess    891 non-null uint8
dtypes: float64(2), int64(5), uint8(22)
memory usage: 68.0 KB

分享到:
標簽:分析 數據 Python
用戶無頭像

網友整理

注冊時間:

網站:5 個   小程序:0 個  文章:12 篇

  • 51998

    網站

  • 12

    小程序

  • 1030137

    文章

  • 747

    會員

趕快注冊賬號,推廣您的網站吧!
最新入駐小程序

數獨大挑戰2018-06-03

數獨一種數學游戲,玩家需要根據9

答題星2018-06-03

您可以通過答題星輕松地創建試卷

全階人生考試2018-06-03

各種考試題,題庫,初中,高中,大學四六

運動步數有氧達人2018-06-03

記錄運動步數,積累氧氣值。還可偷

每日養生app2018-06-03

每日養生,天天健康

體育訓練成績評定2018-06-03

通用課目體育訓練成績評定