1 說明:
=====
1.1 參考文章:
https://www.cnblogs.com/xp12345/p/9818435.html
1.2 對(duì)原代碼進(jìn)行注釋,調(diào)試,增加PIL法顯示中文標(biāo)示。
1.3 獲取攝像頭實(shí)現(xiàn)動(dòng)態(tài)人臉識(shí)別。
1.4 分為:偵測(cè)-收集-訓(xùn)練-識(shí)別。

2 準(zhǔn)備:
=====
2.1 安裝opencv:
pip install opencv-Python
2.2 注意:導(dǎo)入模塊
import cv2 #cv2不是版本號(hào)
科普一下:
cv2中的 2 不是指定發(fā)布的版本號(hào),而是為了區(qū)分OpenCV的 C 和 C++ 的版本。
OpenCV1.x 使用 C 開發(fā);而OpenCV2.x 使用C++。
2.3 環(huán)境:
華為筆記本電腦、深度deepin-linux操作系統(tǒng)、谷歌瀏覽器、python3.8和微軟vscode編輯器。
3 文件結(jié)構(gòu):
========
3.1 圖:

3.2 層次示意圖:

3.3 兩個(gè)xml文件來自:分類器一般位于安裝包c(diǎn)v2下
比如:本機(jī):file:///usr/local/python3.8/lib/python3.8/site-packages/cv2/data下,復(fù)制過來即可
===以下代碼基于筆記本電腦的攝像頭,需打開,訓(xùn)練自己頭像===
4 五個(gè)代碼依次進(jìn)行:
===============
4.1 1-FaceDetection.py代碼:
#人臉檢測(cè)
import numpy as np
import cv2
# 人臉識(shí)別分類器
faceCascade = cv2.CascadeClassifier('/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml')
# 識(shí)別眼睛的分類器
eyeCascade = cv2.CascadeClassifier('/home/xgj/Desktop/face-de/haarcascade_eye.xml')
# 開啟攝像頭
cap = cv2.VideoCapture(0)
ok = True
result =[] #原bug,自己補(bǔ)充
while ok:
# 讀取攝像頭中的圖像,ok為是否讀取成功的判斷參數(shù)
ok, img = cap.read()
# 轉(zhuǎn)換成灰度圖像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 人臉檢測(cè)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(32, 32)
)
result = []
# 在檢測(cè)人臉的基礎(chǔ)上檢測(cè)眼睛
for (x, y, w, h) in faces:
fac_gray = gray[y: (y+h), x: (x+w)]
result = []
eyes = eyeCascade.detectMultiScale(fac_gray, 1.3, 2)
# 眼睛坐標(biāo)的換算,將相對(duì)位置換成絕對(duì)位置
for (ex, ey, ew, eh) in eyes:
result.Append((x+ex, y+ey, ew, eh))
# 畫矩形框--臉部
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
#眼睛
for (ex, ey, ew, eh) in result:
cv2.rectangle(img, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2)
#顯示
cv2.imshow('video', img)
#退出定義
k = cv2.waitKey(1)
if k == 27: # press 'ESC' to quit
break
cap.release()
cv2.destroyAllwindows()
===注意4.1代碼不需要也沒關(guān)系===
4.2 2-FaceDataCollect.py代碼:
#FaceDataCollect,人臉數(shù)據(jù)收集
import cv2
import os
# 調(diào)用筆記本內(nèi)置攝像頭,所以參數(shù)為0,如果有其他的攝像頭可以調(diào)整參數(shù)為1,2
cap = cv2.VideoCapture(0)
#注意路徑
face_detector = cv2.CascadeClassifier('/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml')
#請(qǐng)輸入id:0為一個(gè)人,第二個(gè)人請(qǐng)輸入1,在4py中檢測(cè)識(shí)別中idnums有用
face_id = input('n enter user id:')
print('n Initializing face capture. Look at the camera and wait ...')
count = 0
while True:
# 從攝像頭讀取圖片
sucess, img = cap.read()
# 轉(zhuǎn)為灰度圖片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 檢測(cè)人臉
faces = face_detector.detectMultiScale(gray, 1.3, 5)
#面部畫框
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))
count += 1
# 保存圖像,注意路徑
cv2.imwrite("/home/xgj/Desktop/face-de/img/user." + str(face_id) + '.' + str(count) + '.jpg', gray[y: y + h, x: x + w])
cv2.imshow('image', img)
# 保持畫面的持續(xù)。
k = cv2.waitKey(1)
if k == 27: # 通過esc鍵退出攝像
break
elif count >= 1000: # 得到1000個(gè)樣本后退出攝像,可自定義數(shù)值大小
break
# 關(guān)閉攝像頭
cap.release()
cv2.destroyAllWindows()
#大概需要半個(gè)小時(shí),收集1000張圖片
#我自己約5分鐘后暫停,期間可以做各種面部動(dòng)作,我大概收集50張
4.3 3-face_training.py代碼:
#face_training,人臉數(shù)據(jù)訓(xùn)練
import numpy as np
from PIL import Image
import os
import cv2
# 人臉數(shù)據(jù)路徑,上面保存的灰色照片數(shù)據(jù)集
path = '/home/xgj/Desktop/face-de/img'
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml")
def getImagesAndLabels(path):
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
faceSamples = []
ids = []
for imagePath in imagePaths:
PIL_img = Image.open(imagePath).convert('L') # convert it to grayscale
img_numpy = np.array(PIL_img, 'uint8')
id = int(os.path.split(imagePath)[-1].split(".")[1])
faces = detector.detectMultiScale(img_numpy)
for (x, y, w, h) in faces:
faceSamples.append(img_numpy[y:y + h, x: x + w])
ids.append(id)
return faceSamples, ids
print('Training faces. It will take a few seconds. Wait ...')
faces, ids = getImagesAndLabels(path)
recognizer.train(faces, np.array(ids))
#保存訓(xùn)練好的文件
recognizer.write('/home/xgj/Desktop/face-de/face_trainer/trainer.yml')
print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))
4.4 人臉識(shí)別:
==========
4.4.1 英文版的人臉識(shí)別4-face_recognition.py代碼:
#face_recognition 人臉檢測(cè)并識(shí)別,顯示人名
import cv2
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('/home/xgj/Desktop/face-de/face_trainer/trainer.yml')
cascadePath = "/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
#這里為0或者1都沒有關(guān)系
idnum = 1
names = ['Allen', 'Bob']
#names中存儲(chǔ)人的名字,若該人id為0則他的名字在第一位,id位1則排在第二位,以此類推
cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH))
)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w])
if confidence < 100:
idnum = names[idnum]
confidence = "{0}%".format(round(100 - confidence))
else:
idnum = "unknown"
confidence = "{0}%".format(round(100 - confidence))
cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1) #不能顯示中文
cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (0, 0, 0), 1)
cv2.imshow('camera', img)
k = cv2.waitKey(10)
if k == 27:
break
cam.release()
cv2.destroyAllWindows()
4.4.2 PIL法顯示中文的人臉識(shí)別5-face_recognition_zh_PIL.py代碼:自己添加的
#face_recognition 人臉檢測(cè),PIL法顯示中文人名
import cv2
#---增加的PIL法顯示中文---
import numpy
from PIL import Image, ImageDraw, ImageFont
#定義一個(gè)函數(shù)
def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, numpy.ndarray)): # 判斷是否OpenCV圖片類型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 創(chuàng)建一個(gè)可以在給定圖像上繪圖的對(duì)象
draw = ImageDraw.Draw(img)
# 字體的格式,自己下載華文仿宋字體,放在根目錄下
fontStyle = ImageFont.truetype(
"hwfs.ttf", textSize, encoding="utf-8")
# 繪制文本
draw.text((left, top), text, textColor, font=fontStyle)
# 轉(zhuǎn)換回OpenCV格式
return cv2.cvtColor(numpy.asarray(img), cv2.COLOR_RGB2BGR)
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('/home/xgj/Desktop/face-de/face_trainer/trainer.yml')
cascadePath = "/home/xgj/Desktop/face-de/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
#這里為0或者1都沒有關(guān)系
idnum = 0
names = ['機(jī)器人', 'Bob']
#names中存儲(chǔ)人的名字,若該人id為0則他的名字在第一位,id位1則排在第二位,以此類推
cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH))
)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w])
if confidence < 100:
idnum = names[idnum]
confidence = "{0}%".format(round(100 - confidence))
else:
idnum = "unknown"
confidence = "{0}%".format(round(100 - confidence))
#cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1) #不能顯示中文
#注意下面格式,位置去掉元組格式,并int化
img = cv2ImgAddText(img, str(idnum), int(x+5), int(y-5), (0, 0, 255),20) #顯示為中文PIL法
cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (0, 0, 0), 1)
cv2.imshow('camera', img)
k = cv2.waitKey(10)
if k == 27:
break
cam.release()
cv2.destroyAllWindows()
效果圖

===以上代碼親測(cè)可用===
喜歡的人,請(qǐng)點(diǎn)贊、關(guān)注、評(píng)論、轉(zhuǎn)發(fā)和收藏。
謝謝原博主。