前言
內核里面已經有網絡協議棧了,為什么還要實現一遍用戶態協議棧呢,主要是站在一個設計者的角度,自己去嘗試實現一個協議棧,那么對協議棧的理解會比較透徹,這不比背八股文強?
獲取原始數據
獲取原始數據的三種方法介紹
1、使用原始套接字raw socket , tcpdump和wireshark就是使用這個做的,raw socket主要用來抓包。
2、dbdk,使用dbdk的話篇幅較長,這里就不展開了,有興趣的可以看
Dpdk/網絡協議棧/vpp/OvS/DDos/NFV/虛擬化/高性能專家-學習視頻教程-騰訊課堂
3?.NETmap是用于用戶層應用程序收發原始網絡數據的高性能框架,本文使用netmap進行數據的收發。
netmap
內核協議棧的數據到應用層的數據會經歷兩次拷貝,而netmap采用mmap的方式,直接將網卡的數據映射到一塊內存中,應用程序可以直接通過mmap操作相應內存的數據。
零拷貝
其實通過上面的圖我們就能看到,采用傳統的內核協議棧的方式,會發生兩次拷貝,一是網卡數據拷貝到內核協議棧;二是內核再拷貝到內存中去。而netmap采用的則是零拷貝。
所謂零拷貝,指的是不由CPU操作,copy這個動作是由cpu發出指令move實現的,所以零拷貝就是不由CPU管理,由DMA管理。DMA允許外設與內存直接進行數據傳輸,這個過程不需要CPU的參與。
更多的零拷貝相關內容看一下這個徹底搞懂零拷貝(Zero-Copy)技術
netmap安裝與常用api介紹
安裝netmap
單獨寫一篇安裝教程,按照這個來即可手把手教你ubuntu18.04安裝netmap
netmap的頭文件#include<net/netmap_user.h>在 /netmap/sys/net/下
nm_open
調用 nm_open 函數時,如:nmr = nm_open("netmap:ens33", NULL, 0, NULL); nm_open()會對傳遞的 ifname 指針里面的字符串進行分析,提取出網絡接口名。
nm_open() 會 對 struct nm_desc *d 申 請 內 存 空 間 , 并 通 過 d->fd =open(NETMAP_DEVICE_NAME, O_RDWR);打開一個特殊的設備/dev/netmap 來創建文件描述符 d->fd。
注意這個fd是/dev/netmap這個網卡設備,網卡只要來數據了,相應的這個fd就會有EPOLLIN事件,這個fd是檢測網卡有沒有數據的,因為是mmap,只要網卡有數據了,那么內存就有數據的。
fd是指向網卡,操作數據是操作內存,內存和網卡數據的同步的,而我們cpu只能操作內存,不能操作外設。
簡而言之,struct nm_desc里面包含一個fd,這個fd指向/dev/netmap,用于poll、epoll等系統調用。
一旦調用 nm_open 函數,網卡的數據就不從內核協議棧走了,這時候最好在虛擬機中建兩個網卡,一個用于netmap,一個用于ssh等應用程序的正常工作。
struct nm_desc *nm_open(const char *ifname, const struct nmreq *req, uint64_t new_flags, const struct nm_desc *arg);
struct nm_desc *nmr = nm_open("netmap:ens33", NULL, 0, NULL);
nm_nextpkt
nm_nextpkt是用來接收網卡上到來的數據包的函數。nm_nextpkt會將所有 rx 環都檢查一遍,當發現有一個 rx 環有需要接收的數據包時,得到這個數據包的地址,并返回。所以 nm_nextpkt()每次只能取一個數據包。 因為接收到的數據包沒有經過協議棧處理,因此需要在用戶程序中自己解析。rx 環:想象成一個環形隊列即可,每一項就是一個數據包。
stream即為數據在緩沖區中的首地址,struct nm_pkthdr為返回的數據包頭部信息,不需要管頭部的話直接從stream去取數據就行了。stream現在就是鏈路層的數據
static u_char *nm_nextpkt(struct nm_desc *d, struct nm_pkthdr *hdr);
unsigned* stream = nm_nextpkt(nmr, &nmhead);
nm_inject
nm_inject()是用來往共享內存中寫入待發送的數據包數據的。數據包經共享內存拷貝到網卡,然后發送出去。所以 nm_inject()是用來發包的。
nm_inject()也會查找所有的發送環(tx 環),找到一個可以發送的槽,就將數據包寫入并返回,所以每次函數調用也只能發送一個包。
static int nm_inject(struct nm_desc *d, const void *buf, size_t size);
nm_inject(nmr,&arp_rt,sizeof(arp_rt));
nm_close
nm_close 函數就是回收動態內存,回收共享內存,關閉文件描述符什么的了。
static int nm_close(struct nm_desc *d)
nm_close(nmr);
相關視頻推薦
手寫一個用戶態協議棧以及零拷貝的實現
從netmap到dpdk,從硬件到協議棧,4個維度讓網絡體系構建起來
學習地址:C/C++Linux服務器開發/后臺架構師【零聲教育】-學習視頻教程-騰訊課堂
需要C/C++ linux服務器架構師學習資料加qun812855908獲取(資料包括C/C++,Linux,golang技術,Nginx,ZeroMQ,MySQL,redis,fastdfs,MongoDB,ZK,流媒體,CDN,P2P,K8S,Docker,TCP/IP,協程,DPDK,ffmpeg等),免費分享
協議棧
協議棧的定義
所謂協議棧,“棧”怎么理解,先進后出,正如下圖udp協議所示。在應用層我們調用sendto發送數據時,我們需要在用戶數據前面加上udp的協議頭,然后進入網絡層加入ip頭,進入鏈路層加入以太網的頭,最后由網卡進行數模轉換變成光電信號發送給對端。對端網卡接收到光電信號后進行模數轉換,再依次拆包,最終到達應用層就是我們最初發送的數據了。這個過程就像棧一樣,先進后出。
協議棧在一定意義是又可以稱為協議族,“族”怎么理解,我們看到傳輸層有udp,tcp等協議,網絡層有ip,icmp協議等等,這些協議形成了一個家族。
內核協議棧幫我們解析了傳輸層,網絡層和數據鏈路層的協議,所以我們用戶態協議棧正是去做這三層的協議。
鏈路層首部
以太網協議
?以太網協議:兩個地址皆為6字節的mac地址,后面2字節的類型區分是什么協議
#pragma pack(1) //一字節對齊
#define NETMAP_WITH_LIBS
#define ETH_ADDR_LENGTH 6
#define PROTO_IP 0x0800 //ip協議
#define PROTO_ARP 0x0806 //arp請求協議
#define PROTO_RARP 0x0835 //rarp應答協議
#define PROTP_UPD 17
struct ethhdr {
unsigned char h_dst[ETH_ADDR_LENGTH];
unsigned char h_src[ETH_ADDR_LENGTH];
unsigned short h_proto;
};
網絡層首部
ip協議
?關于ip協議里面第一個字節內的大小端轉換不懂的請查看大端與小端概念、多字節之間與單字節多部分的大小端轉換詳解
struct iphdr {
unsigned char hdrlen: 4, //一字節,手動大小端轉換
version: 4;
unsigned char tos;
unsigned short totlen;
unsigned short id;
unsigned short flag_offset;
unsigned char ttl;
unsigned char type;
unsigned short check;
unsigned int sip;
unsigned int dip;
};
struct ippkt {
struct ethhdr eh; //14
struct iphdr ip; //20
};
arp協議
struct arphdr {
unsigned short h_type;
unsigned short h_proto;
unsigned char h_addrlen;
unsigned char h_protolen;
unsigned short oper;
unsigned char smac[ETH_ADDR_LENGTH];
unsigned int sip;
unsigned char dmac[ETH_ADDR_LENGTH];
unsigned int dip;
};
struct arppkt {
struct ethhdr eh;
struct arphdr arp;
};
傳輸層首部
udp協議
這里傳輸層在本文中先只介紹udp,tcp下文再寫
?為什么在udppkt里面,定義了一個unsigned char data[0];,這個叫柔性數組,或者叫零長數組,是用來定義用戶數據包的起始地址而不占用實際的結構體空間。具體內容自行百度。
struct udphdr {
unsigned short sport;
unsigned short dport;
unsigned short length;
unsigned short check;
};
struct udppkt {
struct ethhdr eh; //14
struct iphdr ip; //20
struct udphdr udp;//8
unsigned char data[0];
};
用戶態協議棧設計實現
1. 實現udp協議
設計思路
我們使用udp工具,給我們的服務器發送udp包,看是否能解析出來,然后按再回發回去
如果要解析udp,那么協議順序為 ether -> ip ->udp,所以我們按照這個順序依次解析即可。
?代碼
//
// Created by 68725 on 2022/7/19.
//
#include <stdio.h>
#include <sys/poll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#define NETMAP_WITH_LIBS
#include <net/netmap_user.h>
#include <string.h>
#pragma pack(1)
#define ETH_ADDR_LENGTH 6
#define PROTO_IP 0x0800
#define PROTO_ARP 0x0806
#define PROTP_UPD 17
struct ethhdr {
unsigned char h_dst[ETH_ADDR_LENGTH];
unsigned char h_src[ETH_ADDR_LENGTH];
unsigned short h_proto;
};
struct iphdr {
unsigned char hdrlen: 4,
version: 4;
unsigned char tos;
unsigned short totlen;
unsigned short id;
unsigned short flag_offset;
unsigned char ttl;
unsigned char type;
unsigned short check;
unsigned int sip;
unsigned int dip;
};
struct ippkt {
struct ethhdr eh; //14
struct iphdr ip; //20
};
struct udphdr {
unsigned short sport;
unsigned short dport;
unsigned short length;
unsigned short check;
};
struct udppkt {
struct ethhdr eh; //14
struct iphdr ip; //20
struct udphdr udp;//8
unsigned char data[0];
};
struct arphdr {
unsigned short h_type;
unsigned short h_proto;
unsigned char h_addrlen;
unsigned char h_protolen;
unsigned short oper;
unsigned char smac[ETH_ADDR_LENGTH];
unsigned int sip;
unsigned char dmac[ETH_ADDR_LENGTH];
unsigned int dip;
};
struct arppkt {
struct ethhdr eh;
struct arphdr arp;
};
void echo_udp_pkt(struct udppkt *udp, struct udppkt *udp_rt) {
memcpy(udp_rt, udp, sizeof(struct udppkt));
memcpy(udp_rt->eh.h_dst, udp->eh.h_src, ETH_ADDR_LENGTH);
memcpy(udp_rt->eh.h_src, udp->eh.h_dst, ETH_ADDR_LENGTH);
udp_rt->ip.sip = udp->ip.dip;
udp_rt->ip.dip = udp->ip.sip;
udp_rt->udp.sport = udp->udp.dport;
udp_rt->udp.dport = udp->udp.sport;
}
int main() {
struct nm_pkthdr h;
struct nm_desc *nmr = nm_open("netmap:ens33", NULL, 0, NULL);
if (nmr == NULL) {
return -1;
}
printf("open ens33 seccessn");
struct pollfd pfd = {0};
pfd.fd = nmr->fd;
pfd.events = POLLIN;
while (1) {
printf("new data coming!n");
int ret = poll(&pfd, 1, -1);
if (ret < 0) {
continue;
}
if (pfd.revents & POLLIN) {
unsigned char *stream = nm_nextpkt(nmr, &h);
//ether
struct ethhdr *eh = (struct ethhdr *) stream;
if (ntohs(eh->h_proto) == PROTO_IP) {
//ip
struct ippkt *iph=(struct ippkt *)stream;
if (iph->ip.type == PROTP_UPD) {
//udp
struct udppkt *udp = (struct udppkt *) stream;
int udplength = ntohs(udp->udp.length);
udp->data[udplength - 8] = '';
printf("udp ---> %sn", udp->data);
struct udppkt udp_rt;
echo_udp_pkt(udp, &udp_rt);
nm_inject(nmr, &udp_rt, sizeof(struct udppkt));
}
}
}
}
nm_close(nmr);
}
測試能否解析udp包的數據
- 開啟netmap
每次重啟使用前都需要insmod netmap.ko ,然后我們查看ls /dev/netmap -l,出現下面的設備就說明開啟成功了。
root@wxf:/netmap/LINUX# insmod netmap.ko
root@wxf:/netmap/LINUX# ls /dev/netmap -l
crw------- 1 root root 10, 54 Jul 18 17:28 /dev/netmap
- 運行上面的udp測試代碼
可以看到我們能夠正常的接收udp數據
?但是為什么過了一會再發數據,程序就接收不到了,而且還多了這么多非udp的數據包??因為宿主機不知道虛擬機的ip和mac地址了,我們查看arp表,發現沒有192.168.109.100虛擬機的記錄,此時宿主機會在局域網內廣播arp請求,這也就是為什么new data coming但不是udp的原因。剛開始能正常解析數據是因為,虛擬機剛開機的時候,我用xshell連虛擬機,所以宿主機發送過arp請求,而虛擬機的內核協議棧此時還沒被netmap接管,回應了arp請求,宿主機就將虛擬機的信息暫時的添加到arp表中,當動態arp記錄失效,udp包不知道發給誰,就會先發arp請求。
?解決這個問題的辦法很簡單,要么我們手動在宿主機上添加一條靜態的arp記錄,要么我們實現arp協議,下面我們來實現arp協議。
2.實現arp協議
設計思路
我們知道arp協議是在網絡層的,所以我們先解析ether,再解析arp即可
?代碼
//
// Created by 68725 on 2022/7/19.
//
#include <stdio.h>
#include <sys/poll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#define NETMAP_WITH_LIBS
#include <net/netmap_user.h>
#include <string.h>
#pragma pack(1)
#define ETH_ADDR_LENGTH 6
#define PROTO_IP 0x0800
#define PROTO_ARP 0x0806
#define PROTO_RARP 0x0835
#define PROTP_UPD 17
struct ethhdr {
unsigned char h_dst[ETH_ADDR_LENGTH];
unsigned char h_src[ETH_ADDR_LENGTH];
unsigned short h_proto;
};
struct iphdr {
unsigned char hdrlen: 4,
version: 4;
unsigned char tos;
unsigned short totlen;
unsigned short id;
unsigned short flag_offset;
unsigned char ttl;
unsigned char type;
unsigned short check;
unsigned int sip;
unsigned int dip;
};
struct ippkt {
struct ethhdr eh; //14
struct iphdr ip; //20
};
struct udphdr {
unsigned short sport;
unsigned short dport;
unsigned short length;
unsigned short check;
};
struct udppkt {
struct ethhdr eh; //14
struct iphdr ip; //20
struct udphdr udp;//8
unsigned char data[0];
};
struct arphdr {
unsigned short h_type;
unsigned short h_proto;
unsigned char h_addrlen;
unsigned char h_protolen;
unsigned short oper;
unsigned char smac[ETH_ADDR_LENGTH];
unsigned int sip;
unsigned char dmac[ETH_ADDR_LENGTH];
unsigned int dip;
};
struct arppkt {
struct ethhdr eh;
struct arphdr arp;
};
int str2mac(char *mac, char *str) {
char *p = str;
unsigned char value = 0x0;
int i = 0;
while (p != '') {
if (*p == ':') {
mac[i++] = value;
value = 0x0;
}
else {
unsigned char temp = *p;
if (temp <= '9' && temp >= '0') {
temp -= '0';
}
else if (temp <= 'f' && temp >= 'a') {
temp -= 'a';
temp += 10;
}
else if (temp <= 'F' && temp >= 'A') {
temp -= 'A';
temp += 10;
}
else {
break;
}
value <<= 4;
value |= temp;
}
p++;
}
mac[i] = value;
return 0;
}
void echo_arp_pkt(struct arppkt *arp, struct arppkt *arp_rt, char *mac) {
memcpy(arp_rt, arp, sizeof(struct arppkt));
memcpy(arp_rt->eh.h_dst, arp->eh.h_src, ETH_ADDR_LENGTH);//以太網首部填入目的 mac
str2mac(arp_rt->eh.h_src, mac);//以太網首部填入源mac
arp_rt->eh.h_proto = arp->eh.h_proto;//以太網協議還是arp協議
arp_rt->arp.h_addrlen = 6;
arp_rt->arp.h_protolen = 4;
arp_rt->arp.oper = htons(2); // ARP響應
str2mac(arp_rt->arp.smac, mac);//arp報文填入源mac
arp_rt->arp.sip = arp->arp.dip; // arp報文填入發送端 ip
memcpy(arp_rt->arp.dmac, arp->arp.smac, ETH_ADDR_LENGTH);//arp報文填入目的 mac
arp_rt->arp.dip = arp->arp.sip; // arp報文填入目的 ip
}
int main() {
struct nm_pkthdr h;
struct nm_desc *nmr = nm_open("netmap:ens33", NULL, 0, NULL);
if (nmr == NULL) {
return -1;
}
printf("open ens33 seccessn");
struct pollfd pfd = {0};
pfd.fd = nmr->fd;
pfd.events = POLLIN;
while (1) {
printf("new data coming!n");
int ret = poll(&pfd, 1, -1);
if (ret < 0) {
continue;
}
if (pfd.revents & POLLIN) {
unsigned char *stream = nm_nextpkt(nmr, &h);
struct ethhdr *eh = (struct ethhdr *) stream;
if (ntohs(eh->h_proto) == PROTO_IP) {
struct ippkt *iph=(struct ippkt *)stream;
if (iph->ip.type == PROTP_UPD) {
struct udppkt *udp = (struct udppkt *) stream;
int udplength = ntohs(udp->udp.length);
udp->data[udplength - 8] = '';
printf("udp ---> %sn", udp->data);
struct udppkt udp_rt;
echo_udp_pkt(udp, &udp_rt);
nm_inject(nmr, &udp_rt, sizeof(struct udppkt));
}
}
else if (ntohs(eh->h_proto) == PROTO_ARP) {
struct arppkt *arp = (struct arppkt *) stream;
struct arppkt arp_rt;
if (arp->arp.dip == inet_addr("192.168.109.100")) {
echo_arp_pkt(arp, &arp_rt, "00:0c:29:1b:18:20");
nm_inject(nmr, &arp_rt, sizeof(arp_rt));
printf("arp retn");
}
}
}
}
nm_close(nmr);
}
//gcc -o main main.c -I /netmap/sys/
//insmod netmap.ko
測試能否回應arp請求
- 開啟netmap
每次重啟使用前都需要insmod netmap.ko ,然后我們查看ls /dev/netmap -l,出現下面的設備就說明開啟成功了。
root@wxf:/netmap/LINUX# insmod netmap.ko
root@wxf:/netmap/LINUX# ls /dev/netmap -l
crw------- 1 root root 10, 54 Jul 18 17:28 /dev/netmap
- 運行上面的udp+arp測試代碼
我們發現成功響應了arp請求
?前面也說過了,一旦調用nm_open函數,網卡的數據就不從內核協議棧走了,所以我們ping一下看看能不能ping通,ping是icmp協議。發現ping不同,但是我們是接收到數據包了的,下面就來實現icmp協議
3.實現icmp協議
設計思路
icmp協議是ip協議的一部分
?icmp的類型:ping請求是8,ping回應是0,其他的就不介紹了
- 代碼:ping的代碼為0
- 校驗和:它的計算方法與IP數據報中的首部校驗和計算方式是一樣IP首部校驗和計算原理
ICMP類型為ping時,具體協議格式如下:
?其中增加的標識符和序號字段按照請求端的數據返回即可,同時對選項數據也必須進行回顯,客戶端可以會驗證這些數據。
代碼
//
// Created by 68725 on 2022/7/19.
//
#include <stdio.h>
#include <sys/poll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#define NETMAP_WITH_LIBS
#include <net/netmap_user.h>
#include <string.h>
#pragma pack(1)
#define ETH_ADDR_LENGTH 6
#define PROTO_IP 0x0800
#define PROTO_ARP 0x0806
#define PROTO_RARP 0x0835
#define PROTP_UPD 17
#define PROTO_ICMP 1
struct ethhdr {
unsigned char h_dst[ETH_ADDR_LENGTH];
unsigned char h_src[ETH_ADDR_LENGTH];
unsigned short h_proto;
};
struct iphdr {
unsigned char hdrlen: 4,
version: 4;
unsigned char tos;
unsigned short totlen;
unsigned short id;
unsigned short flag_offset;
unsigned char ttl;
unsigned char type;
unsigned short check;
unsigned int sip;
unsigned int dip;
};
struct ippkt {
struct ethhdr eh; //14
struct iphdr ip; //20
};
struct udphdr {
unsigned short sport;
unsigned short dport;
unsigned short length;
unsigned short check;
};
struct udppkt {
struct ethhdr eh; //14
struct iphdr ip; //20
struct udphdr udp;//8
unsigned char data[0];
};
struct arphdr {
unsigned short h_type;
unsigned short h_proto;
unsigned char h_addrlen;
unsigned char h_protolen;
unsigned short oper;
unsigned char smac[ETH_ADDR_LENGTH];
unsigned int sip;
unsigned char dmac[ETH_ADDR_LENGTH];
unsigned int dip;
};
struct arppkt {
struct ethhdr eh;
struct arphdr arp;
};
int str2mac(char *mac, char *str) {
char *p = str;
unsigned char value = 0x0;
int i = 0;
while (p != '') {
if (*p == ':') {
mac[i++] = value;
value = 0x0;
}
else {
unsigned char temp = *p;
if (temp <= '9' && temp >= '0') {
temp -= '0';
}
else if (temp <= 'f' && temp >= 'a') {
temp -= 'a';
temp += 10;
}
else if (temp <= 'F' && temp >= 'A') {
temp -= 'A';
temp += 10;
}
else {
break;
}
value <<= 4;
value |= temp;
}
p++;
}
mac[i] = value;//a
return 0;
}
void echo_udp_pkt(struct udppkt *udp, struct udppkt *udp_rt) {
memcpy(udp_rt, udp, sizeof(struct udppkt));
memcpy(udp_rt->eh.h_dst, udp->eh.h_src, ETH_ADDR_LENGTH);
memcpy(udp_rt->eh.h_src, udp->eh.h_dst, ETH_ADDR_LENGTH);
udp_rt->ip.sip = udp->ip.dip;
udp_rt->ip.dip = udp->ip.sip;
udp_rt->udp.sport = udp->udp.dport;
udp_rt->udp.dport = udp->udp.sport;
}
void echo_arp_pkt(struct arppkt *arp, struct arppkt *arp_rt, char *mac) {
memcpy(arp_rt, arp, sizeof(struct arppkt));
memcpy(arp_rt->eh.h_dst, arp->eh.h_src, ETH_ADDR_LENGTH);//以太網首部填入目的 mac
str2mac(arp_rt->eh.h_src, mac);//以太網首部填入源mac
arp_rt->eh.h_proto = arp->eh.h_proto;//以太網協議還是arp協議
arp_rt->arp.h_addrlen = 6;
arp_rt->arp.h_protolen = 4;//aa
arp_rt->arp.oper = htons(2); // ARP響應
str2mac(arp_rt->arp.smac, mac);//arp報文填入源mac
arp_rt->arp.sip = arp->arp.dip; // arp報文填入發送端 ip
memcpy(arp_rt->arp.dmac, arp->arp.smac, ETH_ADDR_LENGTH);//arp報文填入目的 mac
arp_rt->arp.dip = arp->arp.sip; // arp報文填入目的 ip
}
struct icmphdr {
unsigned char type;
unsigned char code;
unsigned short check;
unsigned short identifier;
unsigned short seq;
unsigned char data[32];
};
struct icmppkt {
struct ethhdr eh;
struct iphdr ip;
struct icmphdr icmp;
};
unsigned short in_cksum(unsigned short *addr, int len) {
register int nleft = len;
register unsigned short *w = addr;
register int sum = 0;
unsigned short answer = 0;
while (nleft > 1) {
sum += *w++;
nleft -= 2;
}
if (nleft == 1) {
*(u_char *) (&answer) = *(u_char *) w;
sum += answer;
}
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
answer = ~sum;
return (answer);
}
void echo_icmp_pkt(struct icmppkt *icmp, struct icmppkt *icmp_rt) {
memcpy(icmp_rt, icmp, sizeof(struct icmppkt));
icmp_rt->icmp.type = 0x0; //
icmp_rt->icmp.code = 0x0; //
icmp_rt->icmp.check = 0x0;
icmp_rt->ip.sip = icmp->ip.dip;
icmp_rt->ip.dip = icmp->ip.sip;
memcpy(icmp_rt->eh.h_dst, icmp->eh.h_src, ETH_ADDR_LENGTH);
memcpy(icmp_rt->eh.h_src, icmp->eh.h_dst, ETH_ADDR_LENGTH);
icmp_rt->icmp.check = in_cksum((unsigned short *) &icmp_rt->icmp, sizeof(struct icmphdr));
}
int main() {
struct nm_pkthdr h;
struct nm_desc *nmr = nm_open("netmap:ens33", NULL, 0, NULL);
if (nmr == NULL) {
return -1;
}
printf("open ens33 seccessn");
struct pollfd pfd = {0};
pfd.fd = nmr->fd;
pfd.events = POLLIN;
while (1) {
printf("new data coming!n");
int ret = poll(&pfd, 1, -1);
if (ret < 0) {
continue;
}
if (pfd.revents & POLLIN) {
unsigned char *stream = nm_nextpkt(nmr, &h);
struct ethhdr *eh = (struct ethhdr *) stream;
if (ntohs(eh->h_proto) == PROTO_IP) {
struct ippkt *iph = (struct ippkt *) stream;
if (iph->ip.type == PROTP_UPD) {
struct udppkt *udp = (struct udppkt *) stream;
int udplength = ntohs(udp->udp.length);
udp->data[udplength - 8] = '';
printf("udp ---> %sn", udp->data);
struct udppkt udp_rt;
echo_udp_pkt(udp, &udp_rt);
nm_inject(nmr, &udp_rt, sizeof(struct udppkt));
}
else if (iph->ip.type == PROTO_ICMP) {
struct icmppkt *icmp = (struct icmppkt *) stream;
printf("icmp ---------- --> %d, %xn", icmp->icmp.type, icmp->icmp.check);
if (icmp->icmp.type == 0x08) {
struct icmppkt icmp_rt = {0};
echo_icmp_pkt(icmp, &icmp_rt);
nm_inject(nmr, &icmp_rt, sizeof(struct icmppkt));
}
}
}
else if (ntohs(eh->h_proto) == PROTO_ARP) {
struct arppkt *arp = (struct arppkt *) stream;
struct arppkt arp_rt;
if (arp->arp.dip == inet_addr("192.168.109.100")) {
echo_arp_pkt(arp, &arp_rt, "00:0c:29:1b:18:20");
nm_inject(nmr, &arp_rt, sizeof(arp_rt));
printf("arp retn");
}
}
}
}
nm_close(nmr);
}
//gcc -o main main.c -I /netmap/sys/
//insmod netmap.ko
測試能否回應ping請求
- 開啟netmap
每次重啟使用前都需要insmod netmap.ko ,然后我們查看ls /dev/netmap -l,出現下面的設備就說明開啟成功了。
root@wxf:/netmap/LINUX# insmod netmap.ko
root@wxf:/netmap/LINUX# ls /dev/netmap -l
crw------- 1 root root 10, 54 Jul 18 17:28 /dev/netmap
運行上面的代碼,發現udp,arp,icmp都可以正常解析和發送