Python是一種功能強(qiáng)大的編程語(yǔ)言,被廣泛應(yīng)用于數(shù)據(jù)分析、人工智能、網(wǎng)站開(kāi)發(fā)等各個(gè)領(lǐng)域。它具有簡(jiǎn)潔易讀的語(yǔ)法和豐富的庫(kù),讓編程變得簡(jiǎn)單高效。若想更好地掌握Python,開(kāi)啟自己的創(chuàng)新之旅,不妨嘗試一些具體的代碼示例。
- 數(shù)據(jù)分析與可視化
import pandas as pd import matplotlib.pyplot as plt data = {'Name': ['Alice', 'Bob', 'Cathy', 'David'], 'Age': [25, 30, 35, 40]} df = pd.DataFrame(data) plt.bar(df['Name'], df['Age']) plt.xlabel('Name') plt.ylabel('Age') plt.title('Age Distribution') plt.show()
登錄后復(fù)制
- 簡(jiǎn)單的爬蟲(chóng)
import requests from bs4 import BeautifulSoup url = 'http://example.com' response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') print(soup.prettify())
登錄后復(fù)制
- 機(jī)器學(xué)習(xí)實(shí)踐
from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = RandomForestClassifier() model.fit(X_train, y_train) predictions = model.predict(X_test) print('Accuracy:', accuracy_score(y_test, predictions))
登錄后復(fù)制
通過(guò)這些簡(jiǎn)單的示例,你可以體驗(yàn)Python在數(shù)據(jù)分析、網(wǎng)絡(luò)爬